pyvipr Documentation
Release 1.0.6

Oscar O Ortega

Apr 04, 2022

Installation

CONTENTS:

PyViPR Tutorial and PySB interface

2.1 Start Jupyter Notebook e e e e e e
2.2 Howtointeract with the widget e
PySB interface
3.1 Import pyvipr pysb_viz module and aPySBmodel
3.2 SPECIES VIEW . . . v i i e e e e e e e e e e e e e e e e e
3.3 Communities VIEW o o o i e e e e e e e e e e e e e e e e e
3.4 Bipartite graph with species and bidirectional reactionsnodes L.
3.5 Bipartite graph with species and rulesnodes Lo oL oo
3.6 Bipartite graph with species and rules nodes from incorrect model
3.7 Bipartite graph with species and rules nodes. Rules are grouped by the functions that were used to
createthem. L
3.8 Bipartite graph with species and rules nodes. Rules are grouped by the modules they come from . . .
3.9 Species graph grouped by the compartment in which they are located
3.10 Using a BioNetGen file (.bngl) to visualize themodel
3.11 Visualizing a large rule-based model using the atom-rules graph
3.12 Dynamic visualizationof amodel L

Tellurium interface
4.1 Static network visualizations:

4.2 Visualization of the species network clustered with different algorithms:
4.3 Dynamic visualization: oL e e e e e e
4.3.1 SPeCies VIEW i e e e e e
4.3.2 Species reactions VIEW i i e e e e e e e e e

4.3.3 Communities view

4.3.4 Dynamic visualization of a Telluriummodel

Other graph formats interface

5.1 Networkx graph
5.2 GRAPHML format
5.3 SIFformat
5.4 SBGN XML format
5.5 GEXFformat.
5.6 GML format
57 YAML format

5.8 CYTOSCAPE JSON format

PyViPR Core Modules Reference

WK W

\O 0 00 0 0 00

13
13
13
13
14
14
14
14

15
15
16
16
16
16
16
16
17

19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

PySB static model visualizations (pyvipr.pysb_viz.static_viz) 19
PySB Dynamic model visualizations (pyvipr.pysb_viz.dynamic_viz) 19
PySB visualization views (pyvipr.pysb_viz.views). 19
Tellurium static model visualizations (pyvipr.tellurium_viz.static_viz) 19
Tellurium Dynamic model visualizations (pyvipr.tellurium viz.dynamic_viz). 19
Tellurium visualization views (pyvipr.tellurium viz.views) 19
NetworkX static and dynamic visualizations (pyvipr.networkx_viz.network_viz). 19
NetworkX visualization views (pyvipr.networkx_viz.views) 19

7 Indices and tables 21

pyvipr Documentation, Release 1.0.6

pyvipr is an ipython widget for interactively visualizing systems biology models. It uses PySB for generating network
data and simulating trajectories and Cytoscape.js to render them. It supports BioNetGen and SBML models through
the pysb importer module.

CONTENTS: 1

http://pysb.org/
http://js.cytoscape.org/

pyvipr Documentation, Release 1.0.6

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

To install the pyvipr widget using pip:

pip install pyvipr
jupyter nbextension enable --py --sys-prefix pyvipr

pyvipr Documentation, Release 1.0.6

4 Chapter 1. Installation

CHAPTER
TWO

PYVIPR TUTORIAL AND PYSB INTERFACE

Pyvipr is an ipython widget for interactively visualizing systems biology models. It has an interface to both PySB and
Tellurium for generating network data and simulating trajectories, and uses Cytoscape.js to render static and dynamic
networks. It supports visualization of BioNetGen and SBML models through the PySB importer module.

2.1 Start Jupyter Notebook

To start the jupyter notebook just run the following command in the terminal

jupyter notebook

2.2 How to interact with the widget

All visualizations have a search button that can be used to find nodes in large networks. This search function displays
information about the species label and the type of node (species, reaction, rule, ...). Also, there is a fit button to
center the nodes into the display area, a layout dropdown to select a layout for the network, and a button to save the
visualization into a png file. Additionally, there is a Group button that can be use to embbed selected nodes into a hyper
node.

Dynamic visualizations have a play a pause and refresh button to control the visualization. In addition, there is a
slider that can be grabbed and dragged to go to a specific time point of the simulation.

Gestures supported by cytoscape.js to interact with the widget:
* Grab and drag background to pan : touch & desktop
* Pinch to zoom : touch & desktop (with supported trackpad)
* Mouse wheel to zoom : desktop
» Two finger trackpad up or down to zoom : desktop
* Tap to select : touch & desktop
* Tap background to unselect : desktop
» Taphold background to unselect : desktop & touch
* Multiple selection via modifier key (shift, command, control, alt) + tap : desktop
* Box selection : touch (three finger swipe) & desktop (modifier key + mousedown then drag)

e Grab and drag nodes : touch & desktop

http://pysb.org/
http://tellurium.analogmachine.org/
http://js.cytoscape.org/
http://js.cytoscape.org/#notation/gestures

pyvipr Documentation, Release 1.0.6

Additional gestures added by the widget * Click on a nodes to display connecting nodes: touch & desktop * Click on
compound nodes to show containing nodes: touch & desktop

6 Chapter 2. PyViPR Tutorial and PySB interface

CHAPTER
THREE

PYSB INTERFACE

Function

Description

sp_view(model)

Shows network of interacting species

sp_comp_view(model)

Shows network of species in their respective compartments

sp_comm_louvain_view(model

Shows network of species grouped in communities

sp_rxns_bidirectional_view

(nf3beit9 bipartite network with species and bidirectional rections nodes

sp_rxns_view(model)

Shows bipartite network with species and unidirectional rections nodes

sp_rules_view(model)

Shows bipartite network with species and rules nodes

sp_rules_£fxns_view(model)

Shows bipartite network with species and rules nodes. Rules nodes are grouped
in the functions they come from

sp_rules_mod_view(model)

Shows bipartite network with species and rules nodes. Rules nodes are grouped
in the file modules they come from

projected_species_from_bir

e Rhovessetwicak (lisgedips projected from the bipartite(species, reactions) graph

projected_bireactions_view

(nfstoeld network of reactions projected from the bipartite(species, reactions)
graph

projected_rules_view(model

Shows network of rules projected from the bipartite(species, rules) graph

projected_species_from_rul

e Shavew{avdek)of species projected from the bipartite(species, rules) graph

highlight_nodes_view(model
species, reactions)

Shows network of species and highlights the species and reactions passed as
arguments

atom_rules_view(model,
visualize args, ...)

Uses the BioNetGen atom-rules to visualize large rule-base models. Please
visit PyViPR documentation for parameter details.

sp_dyn_view(SimulationResu

| tShows a species network. Edges size and color are updated according to reac-
tion rate values. Nodes filling are updated according to concentration

sp_comp_dyn_view(Simulatiox

nRersud 83 sp_dyn_view but species nodes are grouped by the compartments on
which they are located

sp_comm_dyn_view(Simulatios

nRrsnd 83 sp_dyn_view but species nodes are grouped by communities

https://en.wikipedia.org/wiki/Community_structure
https://doi.org/10.1371/journal.pcbi.1005857
https://pyvipr.readthedocs.io/en/latest/modules/pysb_viz.html#pyvipr.pysb_viz.static_viz.PysbStaticViz.atom_rules_view

[17:

[2]:

[3]:

[4]:

[5]1:

pyvipr Documentation, Release 1.0.6

3.1 Import pyvipr pysb_viz module and a PySB model

from pyvipr.examples_models.lopez_embedded import model
import pyvipr.pysb_viz as viz

3.2 Species view

In this type of visualization nodes represent molecular species of the model, and the edges represent the reactions that
occur among different species.

viz.sp_view(model)

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—,parameters: 126, expressions...

3.3 Communities view

In this type of visualization nodes represent molecular species of the model, and the edges represent the reaction
that occur among different species. Densely connected nodes are grouped into communities that are represented by
compound nodes.

viz.sp_comm_louvain_view(model, layout_name='klay', random_state=1)

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—parameters: 126, expressions...

3.4 Bipartite graph with species and bidirectional reactions nodes

There are two different sets of nodes in this visualization. Molecular species nodes and reaction nodes that indicate
how species react. Reaction nodes have incoming edges that connect it with reactant species and outgoing edges that
connect it with the product of the reaction.

viz.sp_rxns_bidirectional_view(model)

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—parameters: 126, expressions...

3.5 Bipartite graph with species and rules nodes

There are two different sets of nodes in this visualization. Molecular species nodes and rules nodes that indicate how
species react. Rules nodes have incoming edges that connect it with reactant species and outgoing edges that connect
it with the product of the rule.

viz.sp_rules_view(model, layout_name='cose-bilkent')

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—parameters: 126, expressions...

8 Chapter 3. PySB interface

[6]:

[7]:

[8]:

[9]:

pyvipr Documentation, Release 1.0.6

3.6 Bipartite graph with species and rules nodes from incorrect
model

from pyvipr.examples_models.earm_incorrect import model as model_incorrect
viz.sp_rules_view(model_incorrect, layout_name='cose-bilkent')

Viz(data=<Model 'pyvipr.examples_models.earm_incorrect' (monomers: 23, rules: 62,.
-,parameters: 127, expressions...

3.7 Bipartite graph with species and rules nodes. Rules are grouped
by the functions that were used to create them.

There are two different sets of nodes in this visualization. Molecular species nodes and rules nodes that indicate how
species react. Rules nodes have incoming edges that connect it with reactant species and outgoing edges that connect
it with the product of the rule. Additionally, rules are grouped by the python functions that were used to create them.

viz.sp_rules_£fxns_view(model, layout_name='fcose')

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—,parameters: 126, expressions...

3.8 Bipartite graph with species and rules nodes. Rules are grouped
by the modules they come from

There are two different sets of nodes in this visualization. Molecular species nodes and rules nodes that indicate how
species react. Rules nodes have incoming edges that connect it with reactant species and outgoing edges that connect
it with the product of the rule. Additionally, rules are grouped by the python files where the rules were defined.

viz.sp_rules_mod_view(model, layout_name='fcose')

Viz(data=<Model 'pyvipr.examples_models.lopez_embedded' (monomers: 23, rules: 62,.
—parameters: 126, expressions...

3.9 Species graph grouped by the compartment in which they are lo-
cated

In this type of visualization nodes represent molecular species of the model, and the edges represent the reaction that
occur among different species. Additionally, nodes are grouped by the cellular compartment they belong to.

Note: In order to use this type of visualization your model must have compartments defined.

from pyvipr.examples_models.organelle_transport import model as model_compartments
viz.sp_comp_view(model_compartments)

Viz(data=<Model 'pyvipr.examples_models.organelle_transport' (monomers: 8, rules: 6,.
—,parameters: 19, expressio...

3.6. Bipartite graph with species and rules nodes from incorrect model 9

[10]:

[11]:

[12]:

[13]:

[14]:

pyvipr Documentation, Release 1.0.6

3.10 Using a BioNetGen file (.bngl) to visualize the model

This widget accepts models defined in the BioNetGen format. All the static visualizations are available for this format.
It requires the extension of the file to be .bngl

import os

import pyvipr.examples_models as models

models_path = os.path.dirname(models. _file_)

organelle_model_path = os.path.join(models_path, 'organelle_transport.bngl')

viz.sp_view(organelle_model_path)

Viz(data='/Users/ortega/miniconda3/envs/pyvipr/lib/python3.6/site-packages/pyvipr/
—examples_models/organelle_tr...

3.11 Visualizing a large rule-based model using the atom-rules graph

opts_path = os.path.join(models_path, 'ensemble_1_bng/ensemble_1_opts.txt"')
ensemble_model_path = os.path.join(models_path, 'ensemble_1_bng/ensemble_1.bngl")
visualize_compressed = {'type': 'regulatory',

'opts': opts_path,

'groups': 1, 'collapse': 1, 'doNotUseContextWhenGrouping': 1,
< 'ruleNames': 1,

'removeReactantContext': 1, 'suffix': 'compressed'}
viz.atom_rules_view(ensemble_model_path, visualize_compressed)

Viz(data={'data': {'name': 'ensemble_1', 'style': 'atom'}, 'elements': {'nodes': [{'data
~'"'": {"label': '"_R1', 'b...

3.12 Dynamic visualization of a model

In this type of visualization nodes represent molecular species of the model, and the edges represent the reaction that
occur among different species. The node pie charts are a representation of the concentration relative to the maximum
concentration across all time points. The thickness of the edges is a representation of the order of magnitude of the
reaction rates.

We first simulate the model with pysb and pass the SimulationResult to the widget

import numpy as np
from pysb.simulator import ScipyOdeSimulator
from pyvipr.examples_models.mm_two_paths_model import model as model_dynamic

tspan = np.linspace(®, 20000, 100)
sim_compartments = ScipyOdeSimulator(model, tspan, compiler='python').run()

viz.sp_comm_dyn_view(sim_compartments, random_state=1)

Viz(data=<pysb.simulator.base.SimulationResult object at 0x1246feel®>, layout_name='klay
', process='consumptio...

10 Chapter 3. PySB interface

[1:

pyvipr Documentation, Release 1.0.6

3.12. Dynamic visualization of a model

11

pyvipr Documentation, Release 1.0.6

12 Chapter 3. PySB interface

[17:

CHAPTER
FOUR

4.1 Static network visualizations:

* sp_view(model)

e sp_rxns_view(model)

TELLURIUM INTERFACE

4.2 Visualization of the species network clustered with different algo-

rithms:

¢ sp_comm_louvain_view(model)

* sp_comm_greedy_view(model)

e sp_comm_asyn_lpa_view(model)

* sp_comm_label_propagation_view(model)
* sp_comm_girvan_newman_view(model)

e sp_comm_asyn_fluidc_view(model)

4.3 Dynamic visualization:

e sp_dyn_view(simulation)

In the future, we plan to add more visualizations of Tellurium models

import tellurium as te
import pyvipr.tellurium viz as tviz

r = te.loada("""
J1:S1 -> S2; k1*S1;
J2:S2 -> S3; k2*S2;
J3:S4 -> S3; k2%*S4;

kl= 0.1; k2
S1 = 10; S2

0; S3 =0; S4 = 20;

13

[2]:

[3]:

[4]:

[5]:

[1:

pyvipr Documentation, Release 1.0.6

4.3.1 Species view

tviz.sp_view(r)

Viz(data=<roadrunner.RoadRunner() { this 0x7fee43193900 }>, layout_name='cose-bilkent',

< type_of_viz="sp_view...

4.3.2 Species reactions view

tviz.sp_rxns_view(r)

Viz(data=<roadrunner.RoadRunner() { this = 0x7fee43193900 }>, layout_name='cose-bilkent',
< type_of_viz="sp_rxns...

4.3.3 Communities view

tviz.sp_comm_louvain_view(r)

Viz(data=<roadrunner.RoadRunner() { this 0x7fee43193900 }>, layout_name='klay', type_

—o0f_viz="'sp_comm_louvain...

4.3.4 Dynamic visualization of a Tellurium model

To obtain the dynamic visualization of a Tellurium model users have to pass an specific selection to the simulate
function. This selection has to contain the time variable, and all the species and reactions defined in the model.

Obtaining species and reactions defined in a model
selections = ['time'] + r.getFloatingSpeciesIds() + r.getReactionIds()

r.simulate(®, 40, selections=selections)
tviz.sp_dyn_view(r)

Viz(data=<roadrunner.RoadRunner() { this = 0x7fee43193900 }>, layout_name='cose-bilkent',
<, process='consumption...

14 Chapter 4. Tellurium interface

[1]:

[2]:

[3]:

CHAPTER

FIVE

OTHER GRAPH FORMATS INTERFACE

PyViPR uses NetworkX functions and cytoscape.js extensions to enable the visualization of the following graph for-

mats:
* nx.Graph, nx.DiGraph, nx.MultiDiGraph
« GRAPHML
» SIF
* SBGN XML
* GEXF
* GML
* YAML
* CYTOSCAPE JSON

5.1 Networkx graph

import networkx as nx
import pyvipr.network_viz as nviz
from pyvipr.util_networkx import network_dynamic_data

G = nx.Graph(Q)

G.add_edge(1l, 2)

e = (2, 3)

G.add_edge(*e) # unpack edge tuple*

node_rel = {1:[50, 100, 0],
2:[50, 100, O],
3:[50, 100, 0]}

edge_colors = {(1,2):['#2b913a', '#2b913a', '#2b913a'],
(2, 3):['#2b913a', '#2b913a', '#2b913a'],
(1, 3):['#2b913a', '#2b913a', '#2b913a']l}

nviz.nx_graph_dyn_view(G, tspan=[1,2,3], node_rel=node_rel,
edge_colors=edge_colors, layout_name='fcose')

Viz(data=<networkx.classes.graph.Graph object at 0x116af25f8>, layout_name='fcose'

—0f_viz="dynamic_netwo...

, type_

15

pyvipr Documentation, Release 1.0.6

5.2 GRAPHML format

[4]: nviz.graphml_view('graphs_formats/graphml_example2.graphml', layout_name='fcose')

Viz(data="graphs_formats/graphml_example2.graphml', layout_name='fcose', type_of_viz=
< "graphml')

5.3 SIF format

[5]: nviz.sif_view('graphs_formats/bid_network.sif', layout_name='fcose')

Viz(data='graphs_formats/bid_network.sif', layout_name='fcose', type_of_viz='sif')

5.4 SBGN XML format

[6]: nviz.sbgn_xml_view('graphs_formats/activated_statlalpha_induction_of_the_irfl gene.xml',.
—,layout_name="fcose')

Viz(data='graphs_formats/activated_statlalpha_induction_of_the_irfl gene.xml', layout_
—.name="'£fcose', type_of_vi...

5.5 GEXF format

[7]: nviz.gexf_view('graphs_formats/gexf network.gexf')

Viz(data=<networkx.classes.digraph.DiGraph object at 0x116af2be®>, layout_name='fcose',.
- type_of_viz="network_s...

5.6 GML format

[8]: nviz.gml_view('graphs_formats/karate.gml', label="id")

Viz(data=<networkx.classes.graph.Graph object at 0x116af2fd®>, layout_name='fcose', type_
—o0f_viz="network_stati...

5.7 YAML format

[9]: nviz.yaml_view('graphs_formats/yaml_network.yaml')

Viz(data=<networkx.classes.graph.Graph object at 0x116b99198>, layout_name='fcose', type_
—0f_viz="network_stati...

16 Chapter 5. Other graph formats interface

pyvipr Documentation, Release 1.0.6

5.8 CYTOSCAPE JSON format

[10]: nviz.json_view('graphs_formats/earm.json', layout_name='fcose")

Viz(data="graphs_formats/earm.json', layout_name='fcose', type_of_viz='json')

[1:

5.8. CYTOSCAPE JSON format 17

pyvipr Documentation, Release 1.0.6

18 Chapter 5. Other graph formats interface

CHAPTER
SIX

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

PYVIPR CORE MODULES REFERENCE

PySB static model visualizations (pyvipr.pysb_viz.static_viz)

PySB Dynamic model Vvisualizations (pyvipr.pysb_viz.
dynamic_viz)

PySB visualization views (pyvipr.pysb_viz.views)

Tellurium static model visualizations (pyvipr.tellurium_viz.
static_viz)

Tellurium Dynamic model visualizations (pyvipr.tellurium_viz.
dynamic_viz)

Tellurium visualization views (pyvipr.tellurium_viz.views)

NetworkX static and dynamic Vvisualizations (pyvipr.
networkx_viz.network_viz)

NetworkX visualization views (pyvipr.networkx_viz.views)

19

pyvipr Documentation, Release 1.0.6

20 Chapter 6. PyViPR Core Modules Reference

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

21

	Installation
	PyViPR Tutorial and PySB interface
	Start Jupyter Notebook
	How to interact with the widget

	PySB interface
	Import pyvipr pysb_viz module and a PySB model
	Species view
	Communities view
	Bipartite graph with species and bidirectional reactions nodes
	Bipartite graph with species and rules nodes
	Bipartite graph with species and rules nodes from incorrect model
	Bipartite graph with species and rules nodes. Rules are grouped by the functions that were used to create them.
	Bipartite graph with species and rules nodes. Rules are grouped by the modules they come from
	Species graph grouped by the compartment in which they are located
	Using a BioNetGen file (.bngl) to visualize the model
	Visualizing a large rule-based model using the atom-rules graph
	Dynamic visualization of a model

	Tellurium interface
	Static network visualizations:
	Visualization of the species network clustered with different algorithms:
	Dynamic visualization:
	Species view
	Species reactions view
	Communities view
	Dynamic visualization of a Tellurium model

	Other graph formats interface
	Networkx graph
	GRAPHML format
	SIF format
	SBGN XML format
	GEXF format
	GML format
	YAML format
	CYTOSCAPE JSON format

	PyViPR Core Modules Reference
	PySB static model visualizations (pyvipr.pysb_viz.static_viz)
	PySB Dynamic model visualizations (pyvipr.pysb_viz.dynamic_viz)
	PySB visualization views (pyvipr.pysb_viz.views)
	Tellurium static model visualizations (pyvipr.tellurium_viz.static_viz)
	Tellurium Dynamic model visualizations (pyvipr.tellurium_viz.dynamic_viz)
	Tellurium visualization views (pyvipr.tellurium_viz.views)
	NetworkX static and dynamic visualizations (pyvipr.networkx_viz.network_viz)
	NetworkX visualization views (pyvipr.networkx_viz.views)

	Indices and tables

